
www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Just Spring

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

Just Spring

Madhusudhan Konda

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info

Just Spring
by Madhusudhan Konda

Copyright © 2011 Madhusudhan Konda. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: O’Reilly Publishing Services

Cover Designer: Karen Montgomery
Interior Designer: David Futato

Printing History:
July 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The image of a Tree Swift and related trade dress are trademarks of O’Reilly Media,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31146-9

[LSI]

1311270898

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.it-ebooks.info

Table of Contents

Preface . vii

1. Spring Basics . 1
Introduction 1
Object Coupling Problem 1

Designing to Interfaces 2
Introducing Spring 4

Dependency Injection 4
Refactoring Reader Using Framework 5
Creating ReaderService 6

Injection Types 8
Constructor Type Injection 8
Setter Type Injection 8
Mixing Constructor and Setter 9

Property Files 9
Summary 10

2. Spring Beans . 11
Introduction to Beans 11

Configuring using XML 11
Creating Beans 13
Life Cycle 13

Method Hooks 14
Bean Post Processors 15
Bean Scopes 16

Property Editors 17
Injecting Java Collections 17

Summary 19

3. Advanced Concepts . 21
Containers 21

v

www.it-ebooks.info

http://www.it-ebooks.info

BeanFactory Container 21
ApplicationContext Container 22

Instantiating Beans 23
Using Static Methods 23
Using Factory Methods 24

Bean Post Processors 24
Event Handling 25

Listening to Context Events 25
Publishing Custom Events 26
Receiving Custom Events 27
Single Threaded Event Model 27

Auto Wiring 27
Autowiring byName 28
Autowiring byType 28
Autowiring by Constructor 29
Mixing Autowiring with Explicit Wiring 29

Summary 29

4. Spring JMS . 31
Two-Minute JMS 31

Messaging Models 32
Spring JMS 32

Mother of All: the JmsTemplate class 32
Publishing Messages 34
Sending Messages to Default Destination 36
Destination Types 36
Receiving Messages 37
Receiving Messages Synchronously 37
Receiving Messages Asynchronously 38
Spring Message Containers 39
Message Converters 39

Summary 40

5. Spring Data . 41
JDBC and Hibernate 41

Spring JDBC 42
Hibernate 46

Summary 48

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info

Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Just Spring by Madhusudhan Konda
(O’Reilly). Copyright 2011 Madhusudhan Konda, 978-1-449-30640-3.”

vii

www.it-ebooks.info

http://www.it-ebooks.info

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449306403

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

viii | Preface

www.it-ebooks.info

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449306403
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info

Acknowledgments
I sincerely wish to thank my editor, Mike Loukides, for keeping faith in me and directing
me when lost. Also to all of those in the O’Reilly team, especially Meghan Blanchette,
Holly Bauer, Sarah Schneider. and Dan Fauxsmith, for helping shape this book.

Sincere thanks to my loving wife, Jeannette, for being very patient and supportive
throughout the writing of this book. Also to my wonderful four-year-old son, Joshua,
who surprisingly sacrificed his free time, allowing me to write when I explained to him
what I was doing!

Preface | ix

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 1

Spring Basics

Introduction
The Spring Framework has found a very strong user base over the years. Software
houses and enterprises found the framework to be the best fit for their plumbing needs.
Surprisingly, the core principle that Spring has been built for—the Dependency Injec-
tion (DI)—is very simple to understand. This chapter discusses the fundamentals of
the framework from a high ground. It helps the reader understand the dependency
injection principles. The chapter opens up with a simple problem of object coupling
and dependencies. It then explains how to solve the them using Spring Framework.

Object Coupling Problem
Let us consider a simple program whose objective is to read data from various data
sources. It can read data from a file system or database or even from an FTP server. For
simplicity, we will start writing a program that reads the data from a file system for
now. The following example code is written without employing any best practices or
dependency injection patterns—it’s just a simple and plain program that works.

Example 1-1 shows a Client program that uses FileReader to fetch the data.

Example 1-1.

public class DataReaderClient {
 private FileReader fileReader = null;
 private String fileName = "res/myfile.txt";
 public DataReaderClient() {
 fileReader = new FileReader(fileName);
 }
 private String fetchData() {
 return fileReader.read();
 }
 public static void main(String[] args) {
 DataReaderClient dataReader = new DataReaderClient();
 System.out.println("Got data: "+dataReader.fetchData());

1

www.it-ebooks.info

http://www.it-ebooks.info

 }
}

As the name suggests, the DataReaderClient is the client that fetches the data from a
data source. When the program is executed, the DataReaderClient gets instantiated
along with a referenced FileReader object. It then uses the FileReader object to fetch
the result.

Example 1-2 is the implementation of FileReader class.

Example 1-2.

public class FileReader {
 private StringBuilder builder = null;
 private Scanner scanner = null;
 public FileReader(String fileName) {
 scanner = new Scanner(new File(fileName));
 builder= new StringBuilder();
 }
 public String read() {
 while (scanner.hasNext()) {
 builder.append(scanner.next());
 }
 return builder.toString();
 }
}

The limitation of the above client is that it can only read the data from file system.
Imagine, one fine morning, your manager asks you to improvise the program to read
data from a Database or Socket instead of File! With the current design, it is not possible
to incorporate these changes without refactoring the code. Lastly (and very impor-
tantly), you can see the client and the reader are coupled tightly. That is, client depends
on FileReader’s contract, meaning if FileReader changes, so does the client. If the client
has already been distributed and used by, say, 1000 users across the globe, you will
have fun refactoring the client!

If one’s intention is to build good scalable and testable components, then coupling is
a bad thing.

So, let’s work out on your manager’s demands and make the program read the data
from any source. For this, we will take this program one step further—refactoring so
the client can read from any datasource. For this refactoring, we have to rely on our
famous design to interfaces principle.

Designing to Interfaces
Writing your code against interfaces is a very good practice. I am not going to sing
praises about the best practises of designing here. The first step in designing to interfaces
is to create an interface. The concrete classes will implement this interface, binding
themselves to the interface rather than to an implementation. As long as we keep the

2 | Chapter 1: Spring Basics

www.it-ebooks.info

http://www.it-ebooks.info

interface contract unchanged, the implementation can be modified any number of
times without affecting the client.

For our data reader program, we create a Reader interface. This has just one method:

public interface Reader {
 String read();
}

The next step is to implement this contract. As we have to read the data from different
sources, we create respective concrete implementations such as FileReader for reading
from a File, DatabaseReader for reading from a Database, and FtpReader for reading
from FtpServer. The template for concrete implementation goes in the form of
XXXReader as shown below:

private class XXXReader implements Reader {
 public String read(){
 //impl goes here
 }
}

Once you have the XXXReader ready, the next step is to use it in the client program.
However, instead of using the concrete class reference, use the interface reference.

For example, the modified client program shown below has a Reader variable reference,
rather than FileReader or FtpReader. It has a constructor that takes in the Reader in-
terface as a parameter.

public class DataReaderClient {
 private Reader reader = null;
 public DataReaderClient(Reader reader) {
 this.reader = reader;
 }
 private String fetchData() {
 return reader.read();
 }
 public static void main(String[] args) {
 ...
 }
 }

Looking at the client code, if I ask you to tell me the actual reader that has been used
by the client, would you be able to tell me? You can’t! The DataReaderClient does not
know where it is fed the data until runtime. The Reader class will only be resolved at
runtime using Polymorphism. All we know is that the client can get any of the concrete
implementations of Reader interface. The interface methods that were implemented in
concrete incarnations of Reader are invoked appropriately.

The challenge is to provide the appropriate Reader to the client. One way to do this is
to create a concrete implementation of Reader in the client program. It is shown below:

public class DataReaderClient {
 ...
 public static void main(String[] args) {

Object Coupling Problem | 3

www.it-ebooks.info

http://www.it-ebooks.info

 Reader reader = new FileReader(); //Ummh..still hard wired, isn’t it?
 DataReaderClient client = new DataReaderClient(reader); ...
 }
}

Well, it is still hard wired, and the client will have to know about which Reader it is
going to use. Of course, you could swap FileReader with DatabaseReader or
FtpReader without much hassle, as they all implement Reader interface. So, we are in
much better position when the Manager comes along and changes his mind!

However, we still have the concrete Reader coupled to the client. Ideally, we should
eliminate this coupling as much as possible. The question is how can we can provide
an instance of Reader to DataReader without hardwiring? Is there a way we can abstract
the creation of this FileReader away from the client?

Before I ask you more questions, let me tell you the answer: yes! Any Dependency
Injection framework can do this job for us. One such framework is Spring Framework.

The Spring Framework is one of the Dependency Injection (or Inversion of Control)
frameworks that provides the dependencies to your objects at runtime very elegantly.
I won’t explain the framework details yet, because I’m sure you’re eager to find the
solution to the above problem using Spring first.

Introducing Spring
The object interaction is a part and parcel of software programs. The good design allows
you to replace the moving parts with no or minimal impact to the existing code. We
say the objects are coupled tightly when the moving parts are knitted closely together.
However, this type of design is inflexible—it is in a state where it cannot be scalable or
testable in isolation or even maintainable without some degree of code change. Spring
Framework can come to the rescue in designing the components eliminating depend-
encies.

Dependency Injection
Spring Framework works on one single mantra: Dependency Injection. This is some-
times interchangeable with the Inversion of Control (IoC) principle. When a standalone
program starts, it starts the main program, creates the dependencies, and then proceeds
to execute the appropriate methods. However, this is exactly the reverse if IoC is ap-
plied. That is, all the dependencies and relationships are created by the IoC container
and then they are injected into the main program as properties. The program is then
ready for action. This is essentially the reverse of usual program creation and hence is
called Inversion of Control principle. The DI and IoC are often used interchangeably.

4 | Chapter 1: Spring Basics

www.it-ebooks.info

http://www.it-ebooks.info

Refactoring Reader Using Framework
Coming back to our Reader program, the solution is to inject a concrete implementation
of Reader into the client on demand.

Let us modify the DataReaderClient. The full listing is shown below. Don’t worry about
new classes you see in the client program; you will learn about them in no time.

public class DataReaderClient {
 private ApplicationContext ctx = null;
 private Reader reader = null;
 public DataReaderClient() {
 ctx = new ClasspathXmlApplicationContext(“reader-beans.xml”);
 }
 public String getData() {
 reader = (Reader) ctx.getBean(“fileReader”);
 reader.fetchData();
 }
 public static void main(String[] args) {
 DataReaderClient client = new DataReaderClient();
 System.out.println(“Data:”+client.getData());
 }
}

So, there are couple of notable things in the client program: a new variable referring to
ApplicationContext. This is then assigned an instance of ClasspathXmlApplicationCon
text passing an XML file to the constructor of the class of its instantiation.

These two bits are the key to using Spring Framework. The instantiation of the Appli
cationContext creates the container that consists of the objects defined in that XML
file. I will discuss the framework fundamentals later in the chapter, but for now, let’s
continue with our reader example.

After creating the client class, create an XML file that consists of definitions of our
FileReader. The XML file is shown below:

<bean name="fileReader" class="com.oreilly.justspring.ch1.FileReader"
 <constructor-arg value="src/main/resources/myfile.txt"/>
</bean>

The purpose of this XML file is to create the respective beans and their relationship.
This XML file is then provided to the ApplicationContext instance, which creates a
container with these beans and their object graphs along with relationships. The Spring
container is simply a holder of the bean instances that were created from the XML file.
An API is provided to query these beans and use them accordingly from our client
application.

The ctx = new ClasspathXmlApplicationContext(“reader-beans.xml”) statement cre-
ates this container of beans defined in the reader-beans.xml. In our XML file, we have
defined a single bean: FileReader. The bean was given an unique name: fileReader.
Once the container is created, the client will have to use an API provided by the Context
in order to access all the beans that were defined in the XML file.

Introducing Spring | 5

www.it-ebooks.info

http://www.it-ebooks.info

For example, using the API method ctx.getBean(“fileReader”), you can access the
respective bean instance. That’s exactly what we’re doing in our client, as shown below:

reader = (Reader) ctx.getBean(“fileReader”);

The bean obtained is a fully instantiated FileReader bean, so you can invoke the meth-
ods normally: reader.fetchData().

So, to wrap up, here are the things that we have done to make our program work
without dependencies using Spring:

• We created a concrete Reader implementation, the FileReader as a simple POJO.

• We created the XML file to configure this bean.

• We then created a container with this bean in our client that loads it by reading
the XML file.

• We queried the container to obtain our bean so we can invoke the respective
methods.

Simple and Straightforward, eh?

Currently the client will always be injected with a type of Reader defined in configura-
tion. One last thing you can do to improve your program is to create a service layer.
However, if we introduce a service that would be glued to the client rather than the
Reader, it is the desirable solution. Let’s do this by creating a service.

Creating ReaderService
The ReaderService is an interface between the client and the Readers. It abstracts away
the implementation details and the Reader interface from the client. The client will only
have knowledge of the service; it will know nothing about where the service is going
to return the data. The first step is to write the service:

public class ReaderService {
 private Reader reader = null;
 public ReaderService (Reader reader) {
 this.reader = reader;
 }
 private String fetchData() {
 return reader.read();
 }
}

The service has a class variable of Reader type. It is injected with a Reader implemen-
tation via the constructor. It has just one method—fetchData()—which delegates the
call to respective implementation to return the data.

Wire the ReaderService with appropriate Reader in our reader-beans.xml file:

<bean name="readerService" class="com.oreilly.justspring.ch1.ReaderService">
 <constructor-arg ref="fileReader" />
</bean>

6 | Chapter 1: Spring Basics

www.it-ebooks.info

http://www.it-ebooks.info

<bean name="fileReader" class="com.oreilly.justspring.ch1.FileReader"
 <constructor-arg value="src/main/resources/myfile.txt"/>
</bean>

When this config file is read by the Spring’s ApplicationContext, the ReaderService and
FileReader beans are instantiated. However, as the ReaderService has a reference to
fileReader (constructor-arg ref="fileReader"), the fileReader is instantiated first and
injected into ReaderService.

The modified client that uses ReaderService is given below:

public class DataReaderClient {
 private ApplicationContext ctx = null;
 private ReaderService service = null;
 public DataReaderClient() {
 ctx = new ClasspathXmlApplicationContext(“reader-beans.xml”);
 }
 public String getData() {
 service = (ReaderService) ctx.getBean(“readerService”);
 service.fetchData();
 }
 public static void main(String[] args) {
 DataReaderClient client = new DataReaderClient();
 System.out.println(“Data:”+client.getData());
 }
}

The notable thing is that the client will only have knowledge of the service—no
Readers whatsoever. If you wish to read data from a database, no code changes are
required except config changes as shown below:

<bean name="readerService" class="com.oreilly.justspring.ch1.ReaderService">
 <property name="reader" ref="databaseReader"/>
 <!--
 <property name="reader" ref="fileReader"/>
 <property name="reader" ref="ftpReader"/>
 -->
</bean>
<bean name="databaseReader" class="com.oreilly.justspring.ch1.DatabaseReader"
 <property name="dataSource" ref="mySqlDataSource" />
</bean>
<bean name="ftpReader" class="com.oreilly.justspring.ch1.FTPReader"
 <property name="ftpHost" value="oreilly.com" />
 <property name="ftpPort" value="10009" />
 </bean>
<bean name="fileReader" class="com.oreilly.justspring.ch1.FileReader"
 ...
</bean>

We have defined all the Reader beans in the above configuration. The readerService is
given a reference to the respective Reader without having to make any code change!

Introducing Spring | 7

www.it-ebooks.info

http://www.it-ebooks.info

Injection Types
Spring allows us to inject the properties via constructors or setters. While both types
are equally valid and simple, it’s a matter of personal choice in choosing one over the
other. One advantage to using constructor types over setters is that we do not have to
write additional setter code. Having said that, it is not ideal to create constructors with
lots of properties as arguments. I detest writing a class with a constructor that has more
than a couple of arguments!

Constructor Type Injection
In the previous examples, we have seen how to inject the properties via constructors
by using the constructor-arg attribute. Those snippets illustrate the constructor injec-
tion method. The basic idea is that the class will have a constructor that takes the
arguments, and these arguments are wired via the config file.

See FtpReader shown below:

public class FtpReader implements Reader {
 private String ftpHost = null;
 private int ftpPort = null;
 // Constructor with arguments
 public FtpReader(String host, String port) {
 this.ftpHost = host;
 this.ftpPort = port;
 }
 ...
}

The host and port arguments are then wired using constructor-arg attributes defined
in the config file:

<bean name="ftpReader" class="com.oreilly.justspring.ch1.FtpReader"
 <constructor-arg value="oreilly.com" />
 <constructor-arg value="10009" />
</bean>

You can set references to other beans, too. For example, the following snippet injects
a reference to FtpReader into the ReaserService constructor:

<bean name="readerService" class="com.oreilly.justspring.ch1.ReaderService">
 <constructor-arg ref="ftpReader" />
</bean>

Setter Type Injection
In addition to injecting the dependent beans via constructors, Spring also allows them
to be injected using setters, too. We will modify the ReaderService that can have the
FileReader dependency injected using a setter. In order to use the setter injection, we
have to provide setters and getters on the respective variables.

8 | Chapter 1: Spring Basics

www.it-ebooks.info

http://www.it-ebooks.info

So, in our ReaderService class, create a variable of Reader type and a matching setter/
getter for that property. The constructor is left empty as the properties are now popu-
lated using the setters. You should follow the normal bean conventions when creating
setters and getters. Modified ReaderService is given below:

public class ReaderService {
 private Reader reader = null;
 public ReaderService() { /* empty constructor */}
 public void setReader(Reader reader) {
 this.reader = reader;
 }
 public Reader getReader() {
 return reader;
 }
}

The notable change to the previous version is the omission of constructor. Instead, the
setter and getter of the Reader variable will set and access the object. We should also
refactor our XML file:

<bean name="readerService" class="com.oreilly.justspring.ch1.ReaderService" >
 <property name="reader" ref="fileReader" />
</bean>
<bean name="fileReader" class="com.oreilly.justspring.ch1.FileReader" >
 ...
</bean>

The notable change is to create a property called reader and set it with a reference to
fileReader. The framework will check the ReaderService for a reader property and
invokes setReader by passing the fileReader instance.

Mixing Constructor and Setter
You can mix and match the injection types, too. The revised FileReader class listed
below has a constructor as well as a few other properties. The componentName is initial-
ized using constructor, while fileName is set via setter.

<bean name="fileReader" class="com.oreilly.justspring.ch1.FileReader"
 <constructor-arg componentName="TradeFileReader" />
 <property name="fileName" value="src/main/resources/myfile.txt" />
</bean

Although mixing and matching the injection types is absolutely possible, I would rec-
ommend sticking one or the other of them, rather than both, to avoid complicating
matters.

Property Files
I will show one more good point before wrapping up the chapter. When defining the
FileReader or FtpReader, we have set the hard-coded properties in the XML file. Is there
a way that we can resolve properties mentioned in the config file to be abstracted away?

Property Files | 9

www.it-ebooks.info

http://www.it-ebooks.info

If I need to change the properties from one environment to another, I will have to modify
this XML file. This is definitely not a good practice. Spring gives us another way of
injecting these properties, too. Let’s see how we can do this.

Create a property file called reader-beans.properties and add the properties and their
values:

#property=value
file-name="/src/main/resources/myfile.txt"
ftp-host = "oreilly.com"
ftp-port="10009"

Edit the reader-beans.xml file to add the Framework’s class named PropertyPlacehol
derConfigurer. This class has a property called location, which should be pointing to
your properties file:

<bean id="placeholderConfig"
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="location" value="classpath:reader-beans.properties" />
</bean>

This bean can pick up the property file as long as it is present in the classpath.

The next step is to parameterize the FileReader property:

<bean name="fileReader" class="com.oreilly.justspring.ch1.FileReader"
 <property name="fileName" value="${file-name}" />
</bean>
<bean name="ftpReader"class="com.oreilly.justspring.ch1.FtpReader"
 <property name="ftpHost" value="${ftp-host}" />
 <property name="ftpPort" value="${ftp-port}" />
</bean>

The ${file-name} resolves to the name-value pair defined in the reader-beans.proper
ties file. So do the ${ftpHost} and ${ftpPort} properties.

Summary
This chapter introduced the Spring framework from the 10,000-foot view. We have
seen the problem of object coupling and how the framework solved the dependency
issues. We also glanced at framework’s containers and injection types. We have
scratched the surface of the framework’s usage, leaving many of the fundamentals to
the upcoming chapters.

We are going to see the internals of the framework in depth in the next chapter.

10 | Chapter 1: Spring Basics

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 2

Spring Beans

We saw the bare-minimum basics of Spring Framework in the last chapter. We worked
with new things such as beans, bean factories, and containers. This chapter will explain
them in detail. It discusses writing beans, naming conventions, how they are wired into
containers, etc. This chapter forms the basis to understanding the details of the Spring
Framework in depth.

Introduction to Beans
For Spring, all objects are beans! The fundamental step in the Spring Framework is to
define your objects as beans. Beans are nothing but object instances that would be
created by the spring framework by looking at their class definitions. These definitions
basically form the configuration metadata. The framework then creates a plan for which
objects need to be instantiated, which dependencies need to be set and injected, the
scope of the newly created instance, etc., based on this configuration metadata.

The metadata can be supplied in a simple XML file, just like in the first chapter. Alter-
natively, one could provide the metadata as Annotation or Java Configuration.

Configuring using XML
Let’s define a bean with a name myBean that corresponds to a class com.oreilly.just
spring.ch2.MyBean. The MyBean expects a String value as a constructor argument. It
also defines two properties, property1 and property2.

Example 2-1 shows the simple XML file.

Example 2-1.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

11

www.it-ebooks.info

http://www.it-ebooks.info

 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">

 <bean name="myBean" class="com.oreilly.justspring.ch2.MyBean">
 <constructor-arg value="MyConstructorArgument"/>
 <property name="property1" value="value1"/>
 <property name="otherBean" ref="myReferenceBean"/>
 </bean>
</beans>

The topmost node declares <beans> as your root element. All bean definitions would
then follow using a <bean> tag. Usually, the XML file consists of at least one bean. Each
bean definition may contain sets of information, most importantly the name and the
class tags. It may also have other information, such as the scope of the bean instantiated,
the dependencies, and others. Basically, when the config file is loaded at runtime, the
framework would pick up the definitions and create the instance of MyBean. It then gives
a name as myBean. The developer should use the name as an API starting point to query
the bean instance.

You can split the bean definitions across multiple files. For example, you create all the
beans that deliver the business functions in a file called business-beans.xml, the utility
beans in util-beans.xml, data access beans in dao-beans.xml, etc. We will see how to
instantiate the Spring container using multiple files later in the chapter. Usually, I follow
the convention of creating the files using two parts separated by a hyphen. The first
part usually represents the business function, while the second part simply indicates
that these are spring beans. There is no restriction on the naming convention, so feel
free to name your beans as you wish.

Each bean should either have a name or id field attached to it. You can create the beans
with neither of these things, making them anonymous beans (which are not available
to query in your client code). The name and id fields both serve the same purpose,
except that the id field corresponds to XML spec’s id notation. This means that checks
are imposed on the id (for example, no special characters in the id value, etc.). The
name field does not attract any of these restrictions.

The class field declares the fully qualified name of the class. If the instantiation of the
class requires any data to be initialized, it is set via properties or a constructor argument.
As you can see in Example 2-1, the MyBean object is instantiated with both types: con-
structor argument and property setters. The value fields can be simple values or refer-
ences to other beans. A ref tag is used if a the bean needs another bean, as is seen for
otherBean.

You can name the bean as you wish. However, I would suggest sticking to camelCase
class name, with the first letter being lowercase. So, myBean suits well, as indicated in
the above example.

12 | Chapter 2: Spring Beans

www.it-ebooks.info

http://www.it-ebooks.info

Creating Beans
The beans are the instances wired together to achieve an application’s goal. Usually in
a standard Java application, we follow a specific life cycle of the components, including
their dependencies and associations. For example, when you start a main class, it au-
tomatically creates all the dependencies, sets the properties, and instantiates the in-
stances for your application to progress. However, the responsibility of creating the
dependency and associating this dependency to the appropriate instance is given to
your main class, whereas in Spring, this responsibility is taken away from you and given
to the Spring Container. The instances (aka beans) are created, the associations are
established, and dependencies are injected by the Spring Framework entirely. These
beans are then contained in a Container for the application to look up and act upon
them. Of course, you would have to declare these associations and other configuration
metadata either in an XML file or provide them as Annotations for the Framework to
understand what it should do.

Life Cycle
The Spring Framework does quite a few things behind the scenes. The life cycle of a
bean is easy to understand, yet different from the life cycle exposed in a standard Java
application. In a normal Java process, a bean is usually instantiated using a new oper-
ator. The Framework does a few more things in addition to simply creating the beans.
Once they are created, they are loaded into the appropriate container (we will learn
about containers later in this chapter). They are listed below:

• The framework factory loads the bean definitions and creates the bean.

• The bean is then populated with the properties as declared in the bean definitions.
If the property is a reference to another bean, that other bean will be created and
populated, and the reference is injected prior to injecting it into this bean.

• If your bean implements any of Spring’s interfaces, such as BeanNameAware or Bean
FactoryAware, appropriate methods will be called.

• The framework also invokes any BeanPostProcessor’s associated with your bean
for pre-initialzation.

• The init-method, if specified, is invoked on the bean.

• The post-initialization will be performed if specified on the bean.

We will discuss these points in the coming sections.

Look at the following XML code snippet:

Example 2-2. FileReader without a dependency

<bean name="fileReader" class="com.oreilly.justspring.ch2.FileReader">
 <property name="fileName" value="/opt/temp/myfile.txt"/>
</bean>

Life Cycle | 13

www.it-ebooks.info

http://www.it-ebooks.info

When the factory reads the definition, it creates the class using the new operator (in
reality, the bean is instantiated using Java Reflection). After the bean is created, the
property fileName is injected. In this case, a setter called setFileName is invoked and
given a value of /opt/temp/myfle.txt as an argument. The bean is now instantiated and
ready to be used.

However, if the FileReader bean has a dependency on another bean, the other bean
will be created and instantiated. See Example 2-3. The FileReader has to be injected
with a location object.

Example 2-3. FileReader with a dependency

<bean name="fileReader" class="com.oreilly.justspring.ch2.FileReader">
 <property name="location" ref="fileLocation"/>
</bean>

The property location references another bean called fileLocation. The bean defini-
tion is given in Example 2-4.

Example 2-4. Location definition

<bean name="fileLocation" class="com.oreilly.justspring.ch2.Location">
 <property name="fileName" value="myfile.txt"/>
 <property name="filePath" value="/opt/temp"/>
</bean>

The order of creation is important for Spring. After digesting the configuration meta-
data, Spring creates a plan (it allocates certain priorities to each bean) with the order
of beans that needs to be created to satisfy dependencies. Hence, the Location object
is created first, before the FileReader. If Spring encounters any exception while creating
Location object, it will fail fast and quit. It does not create any further beans and lets
the developer know why it won’t progress further.

Method Hooks
Spring Framework provides a couple of hooks in the form of callback methods. These
methods provide opportunity for the bean to initialize properties or clean up resources.
There are two such method hooks: init-method and destroy-method.

init-method

When the bean is created, you can ask Spring to invoke a specific method on your bean
to initialize. This method provides a chance for your bean to do housekeeping stuff and
to do some initialization, such as creating data structures, creating thread pools, etc.
You have to declare the method in the XML file as shown in Example 2-5.

Example 2-5. init-method declaration

<bean name="fileReader" class="com.oreilly.justspring.ch2.FileReader" init-method="init">

14 | Chapter 2: Spring Beans

www.it-ebooks.info

http://www.it-ebooks.info

The FileReader class with init-method is provided in Example 2-6.

Example 2-6. FileReader with init-method

public class FileReader implements Reader {
 private List<Location> locations = null;
 // This method is called give us opportuniting to custom initialize
 public void init(){
 locations = new ArrayList<Locations>();
 }
}

Once the FileReader is created, its init-method (in this case, init) as declared in the
config is invoked. The init method in this case creates a List of Locations.

destroy-method

Similar to the initialization, framework also invokes a destroy method to clean up before
destroying the bean. Framework provides a hook with the name destroy-method, as
shown below:

Example 2-7. FileReader with destroy-method method

public class FileReader implements Reader {
 private List<Location> locations = null;
 // This method is invoked by the Spring Framework before destroying the bean
 public void cleanUp(){
 locations = null;
 }
}

You should refer the cleanUp method as your destroy method in the XML declaration
as shown below.

<bean name="fileReader" class="com.oreilly.justspring.ch2.FileReader"
destroy-method="cleanUp">

When the program quits, the framework destroys the beans. During the process of
destroying, as the config metadata declares cleanUp as the destroy method, the
cleanUp method is invoked. This gives the bean a chance to do some housekeeping
activities.

Bean Post Processors
Spring provides a couple of interfaces that your class can implement in order to achieve
the bean initialization and housekeeping. Those interfaces are InitializingBean or
DisposableBean, which has just one method in each of them. Example 2-8 shows the
Connection bean implementing these interfaces. The InitializingBean’s afterProper
tiesSet method is called so the bean gets an opportunity to initialize. Similarly, the
DisposableBean’s destroy method is called so the bean can do housekeeping when the
bean is removed by the Spring.

Life Cycle | 15

www.it-ebooks.info

http://www.it-ebooks.info

Example 2-8. Connection class implementing Spring’s post .processors

public class Connection implements InitializingBean, DisposableBean {
 private ObjectName objectName;
 //InitializingBean's method implementation
 public void afterPropertiesSet(){
 connection.registerToJmx(objectName);
 }
 //DisposableBean's method implementation
 public void destroy(){
 connection.unregisterFromJmx(objectName);
 }
}

The downside of using these interfaces is that we are locking our implementation to
Spring’s API. I would not recommend this; however, it is your choice. The same func-
tionality can be achieved using the init-method and destroy-method (see section 3.1),
so why lock to vendor unnecessarily?

Bean Scopes
Did you wonder how many instances will be created when the container is queried for
your bean? If you have a case where you have one and only one bean (such as a service
or a factory) irrespective of the number of times you call the container, does it return
the same bean? Or for every call, do you want to have a new bean instantiated? How
does Spring achieve this? Well, it turns out to be a simple config tag that dictates these
types: singleton and prototype.

Singleton Scope

When you need one and only one instance of a bean, you should set the singleton
property to true, as shown below:

<bean name="fileReader" class="com.oreilly.justspring.ch2.FileReader" singleton="true">

However, the default scope is always singleton. Hence, you can ignore the declaration
of singleton property as shown below:

<bean name="fileReader" class="com.oreilly.justspring.ch2.FileReader">

Every time a fileReader is injected into another bean or queried using the getBean()
method, the same instance is returned. Note that there is a subtle difference between
the instance obtained using the Java Singleton pattern and Spring Singleton. Spring
Singleton is a singleton per context or container, whereas the Java Singleton is per
process and per class loader.

16 | Chapter 2: Spring Beans

www.it-ebooks.info

http://www.it-ebooks.info

Prototype Scope

Prototype scope creates a new instance every time a call is made to fetch the bean. For
example, we define a Trade object that gets created with a unique id every time it is
instantiated.

public class Trade {
 private AtomicInteger uniqueId = -1;
 public void Trade() { }
 public int initId() {
 uniqueId = AtomicInteger.incrementAndGet();//RECHECK
 }
}

In order to achieve this functionality, all we have to do is set the singleton property to
false in our config file. Spring would then create a new Trade object for every invoca-
tion.

Example 2-9. Trade bean definition

<bean name="trade" ref="com.oreilly.justspring.ch2.Trade" singleton="false"
init-method="initId"/>

You may notice no difference in the code base, whether using singleton or prototype.
The difference is seen just in the declarative part. In order to obtain a new trade instance,
the singleton tag is set to false on the Trade bean definition. This tag is the key to creating
a new instance every time a request comes along.

Property Editors
I’m sure the question of what type of values should be set on the properties declared
in the XML file might have crossed your mind. From the declaration, it sounds like the
properties are just Strings or Java Primitives. What if we have other types of properties,
such as object references, Lists, Custom classes, and other Collections? Well, it turns
out that the Spring follows the Java Bean style property editor mechanism to resolve
the actual types.

If the property is another bean reference (a dependency), the actual type of the bean is
resolved when injecting the dependency.

Injecting Java Collections
Injecting an initialized collection such as a List, Set, or Map couldn’t be any easier in
Spring. There is a specific syntax to follow in the config file so the collection is initialized
before injecting.

Property Editors | 17

www.it-ebooks.info

http://www.it-ebooks.info

Using Properties

Consider the following snippet, which reads data from the java.util.Properties object
(property-value pairs).

Example 2-10. Setting Properties type object

public class JMSSource{
 private Properties sourceProps = null;
 public void setProperties(Properties props){
 sourceProps = props;
 }
}

In order to set the values to your sourceProps properties variable, use Example 2-11 to
set the values. The sourceProps is then populated using <props> and <prop> tags.

Example 2-11.

<bean name="jmsSource" class="com.oreilly.justspring.ch2.JMSSource">
 <props name="sourceProps">
 <props>
 <prop key="1">system_1</prop>
 <prop key="2">system_2</prop>
 <prop key="3">system_3</prop>
 </list>
 </props>
</bean>

Using Lists, Sets and Maps

In order to use Lists, use the following config metadata.

Example 2-12.

<bean name="jmsSource" class="com.oreilly.justspring.ch2.JMSSource">
 <props name="sourceProps">
 <list>
 <value>system_1</value>
 <value>system_2</value>
 <value>system_3</value>
 </list>
 </props>
</bean>

Of course, you will have a java.util.List variable defined in your class:

public class JMSSource {
 private List sourceProps = null;
 public void setProperties(List props) {
 sourceProps = props;
 }
}

18 | Chapter 2: Spring Beans

www.it-ebooks.info

http://www.it-ebooks.info

Similarly, if you have to pump in Set values, swap the list tag with <set>, as shown in
Example 2-13. Obviously, you cannot insert duplicate data in Set implementations.

Example 2-13.

<bean name="jmsSource" class="com.oreilly.justspring.ch2.JMSSource">
 <props name="sourceProps">
 <set>
 <value>u1</value>
 <value>u2</value>
 </set>
 </props>
</bean>

Swap the List type of the sourceProps with Set type:

private Set sourceProps = null;

When using Maps, on the class side, as expected, you need to use the java.util.Map
implementation. However, when configuring, there are certain subtle differences. The
element in a map is made of an Entry node, which has name-value pairs. Note that you
can set bean references in your collections, too, as was shown for the property unique
KeyGen.

<bean name="jmsSource" class="com.oreilly.justspring.ch2.JMSSource">
 <props name="sourceProps">
 <map>
 <entry key="threads">
 <value>10</value>
 </entry>
 <entry key="numberOfRetries">
 <value>3</value>
 </entry>
 <entry key="uniqueKeyGen">
 <ref bean="com.oreilly.justspring.ch2.JMSSourceKeyGen"/>
 </entry
 </map>
 </props>
</bean>

As expected, replace the List type with Map type.

private Map sourceProps = null;

Summary
This chapter discussed the Spring framework in detail. It explained the concept of beans
and bean factories. We have also learned about the life cycle of the bean scopes and
touched upon the property editors used in injecting Java Collections and other types
of objects.

Summary | 19

www.it-ebooks.info

http://www.it-ebooks.info

We will be discussing the containers and application contexts in the next chapter,
which forms a crucial concept in putting the framework to work.

20 | Chapter 2: Spring Beans

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 3

Advanced Concepts

A Spring container is the backbone of the framework. A container is basically a pool of
beans created in a memory space by the framework when the application starts up. An
API provided by the framework exposes methods to query the container beans. We’ll
start the chapter by looking at the containers and different categories. We’ll also look
at details about advanced concepts such as AutoWiring.

Containers
Understanding containers is a very important task that needs to happen before you can
start working with the framework. During this process, the beans are instantiated, the
associations and relationships are created, all the relationships are satisfied, and de-
pendencies are injected. All named beans are available for querying using an API. Note
that beans are loaded lazily into the container. This means that unless the bean is re-
quested by yours or another bean (as a part of dependency), the factory will not in-
stantiate the bean. This strategy works the same for any container in Spring, except
loading Singletons in the ApplicationContext container.

Spring containers primarily fall into two categories: Bean Factories and Application
Contexts. The names are sort of misnomers, as they do not give any clue as to whether
they’re containers and what they do. The BeanFactory is a simple container supporting
basic dependency injection, whereas ApplicationContext is an extension of BeanFac
tory, which has a few additional bells and whistles.

BeanFactory Container
This is the simplest of all types of containers Spring has provided. The factory imple-
ments the org.springframework.beans.factory.BeanFactory interface. The crux of this
factory is that it creates and instantiates beans with all the dependent configurations.
So, when you query a bean, it is obtained in your client as a fully functional instance,
meaning all the associations and relationships have already been created. The bean
factory implementor can also invoke the customized init-method and destroy-methods.

21

www.it-ebooks.info

http://www.it-ebooks.info

Spring provides a few of the implementations of BeanFactory out of the box, the most
common being XmlBeanFactory. As the name suggests, it reads the configuration met-
adata from an XML file. Using the XmlBeanFactory in your client is very easy and
straightforward (similar to what we’ve seen in our previous examples of using Applica
tionContext). Example 3-1 shows the code to instantiate the factory. The constructor
takes in an XML file passed into a FileInputStream object.

Example 3-1. BeanFactory usage

// Instantiate the factory with your beans config file
BeanFactory factory = XmlBeanFactory(new FileInputStream("trade-beans.xml"));

// Use the factory to obtain your TradeService bean
TradeService service = (TradeService) factory.getBean("tradeService");

The BeanFactory is usually preferred in small device applications such as mobile phones,
etc., where the resources are limited. If you are writing any standard Java or JEE ap-
plication, you would ideally ditch BeanFactory to go with ApplicationContext imple-
mentation.

ApplicationContext Container
Simply put, the extension of BeanFactory is the ApplicationContext, which provides
application events as an added bonus. The ApplicationContext does extend the Bean
Factory and hence all the functionality of BeanFactory is already embedded in the
ApplicationContext container. Ideally, one can use this container straight away due to
its extended functionality. Similar to BeanFactory implementations, there are three
concrete implementations of ApplicationContext.

• FileSystemXmlApplicationContext: This container loads the definitions of the
beans found in the XML file located at a specified file system location. You should
provide the full path of the file to the constructor.

• ClassPathXmlApplicationContext: In this container, the XML config file is read
from the classpath by the container. The only difference between the FileSys-
temXmlApplicationContext and this one is that this context does not require the
full path of the file.

• WebXmlApplicationContext: This container loads the XML file with definitions of
all beans from within a web application.

We have already seen the usage of any of the ApplicationContext type containers
in the first chapter. Let me recap the usage again here:

Instantiating the FileSystemXmlApplicationContext takes the exact location of the
beans file, as shown in Example 3-2.

22 | Chapter 3: Advanced Concepts

www.it-ebooks.info

http://www.it-ebooks.info

Example 3-2.

ApplicationContext ctx =
new FileSystemXmlApplicationContext("/opt/temp/trade-beans.xml");

Whereas instantiating the ClassPathXmlApplicationContext expects the location of
the beans file in the classpath, so we do not need to give the exact path. Exam-
ple 3-3 shows this:

Example 3-3. Using ClassPathXmlApplicationContext

ApplicationContext ctx = new ClassPathXmlApplicationContext("trade-beans.xml");

Instantiating Beans
Beans are instantiated by the framework in more than one way. We have already seen
in previous chapters how the beans were instantiated using Constructors. You should
ideally provide a constructor in your bean and corresponding metadata in the XML
file. If the constructor takes any arguments, we should pass them as constructor-arg
attributes in our config file. We are not going to discuss instantiating beans using con-
structors, as it would be repetitive. Instead, we'll look into two other types to instantiate
them.

Using Static Methods
This type of instantiating is well suited if your classes have static factories for creating
the object instances. The procedure is simple: write a class with a static method that
would create an instance of that class or whatever you wish to do in that method. In
your bean config, once you have declared the class attribute, define an attribute called
factory-method. Let’s see how we can create a TradeService using the static method.
First, define the TradeService class (Example 3-4):

Example 3-4. TradeService client code snippet

public class TradeService {
 private static TradeService service = new TradeService();
 public static TradeService getTradeService(){
 return service;
 }
}

Declare the above service client in the XML file definition as shown in ???
on page 23.

Example 3-5. TradeService client XML config

<bean name="tradeService" class="com.oreilly.justspring.ch3.TradeService"
factory-method="getTradeService"/>

Instantiating Beans | 23

www.it-ebooks.info

http://www.it-ebooks.info

The factory-method attribute invokes the respective static method on the class. Note
that the declaration does not mention the factory-method being static anywhere. How-
ever, it must be declared static if you wish to encounter no errors. Also note that the
return type method is not imperative; it is only known if you see the implementation
of that method in the declared class, unfortunately.

Using Factory Methods
What if you wish to create the instance using non-static methods? Well, Spring Frame-
work does allow us to instantiate the beans using non-static factory methods, too.
Although it’s not straightforward, it’s not hard to grasp either. The EmployeeCreator is
a simple class that creates either employees or executives using two factory methods.
See Example 3-6 for the code snippet.

Example 3-6. EmployeeCreator that has two factory methods

public class EmployeeCreator {
 public Employee createEmployee() {
 Employee emp = new Employee();
 return emp;
}

public Employee createExecutive() {
 Employee emp = new Employee();
 emp.setTitle("EXEC");
 emp.setBonusGrade("GRADE-A");
 return emp;
 }
}

Declare the bean config (Example 3-7) as shown below:

Example 3-7. EmployeeCreator metadata

<bean name="empCreator" factor-bean="employeeCreator" factory-method="createEmployee"/>
<bean name="execCreator" factor-bean="employeeCreator" factory-method="createExecutive"/>
<bean name="employeeCreator" class="com.oreilly.justspring.ch3.EmployeeCreator"/>

Did you notice that we do not include the class attribute at all? However, the factory-
bean should refer to the actual bean on which these factory methods were declared. In
our case, the reference is employeeCreator, however, we need to declare that bean, too.
As you may have noticed, the factory methods are not static in the above implemen-
tations.

Bean Post Processors
Spring allows us to poke into the bean’s life cycle by implementing bean post process-
ors. We get a chance to alter the configuration or set custom values as the properties
on the bean or implement sophisticated init processes. A BeanPostProcessor interface

24 | Chapter 3: Advanced Concepts

www.it-ebooks.info

http://www.it-ebooks.info

is used to exploit this functionality. It has two callback methods: postProcessBeforeI
nitialization and postProcessAfterInitialization.

As the names indicate, the postProcessBeforeInitialization method is invoked just
before calling your init-method or afterPropertiesSet method on the bean. Your bean
is just about to be implemented, but you have been given a chance to do something
before the final call! Similarly, the postProcessAfterInitialization method is called
just after the initialization of the bean is completed.

We need to tell the framework that we’re using post processors. If the container is
BeanFactory, we have to invoke addBeanPostProcessor (ourProcessor) on the BeanFac-
tory in order to set the post processor instance. However, if the container is Applica
tionContext, defining in the config file is enough! The container automatically looks at
the class to see if it’s a post processor. It then invokes the appropriate methods during
the instantiation of the bean. We should define the config as shown below:

<bean name="beanPostProcessor" class="com.oreilly.justspring.ch3.TradePostProcessor"/>

As you can see, you do not have to define the bean as a post processor anywhere in the
config, the container will automatically find all the post processors and load them for
further work.

Event Handling
Sometimes, you may want to react to an event that happened in the container so you
can do some custom processing. I’m sure you must be wondering how to get notified
upon a bean’s initialization or when its context is refreshed. Also, if you wish to let
other beans know that you have finished processing a huge file, for example, how can
you notify? Spring provides a way to listen to the events that may allow you to react on
the context. And yes, you can use Spring’s framework to publish your custom events,
too.

The ApplicationContext publishes certain types of events when loading the beans. For
example, a ContextStartedEvent is published when the context is started and Context
StoppedEvent is published when the context is stopped. We can have our beans receive
these events if we wish to do some processing on our side based on these events. We
can also publish our own events, too.

Let’s see the procedure involved in listening and publishing events.

Listening to Context Events
In order to listen to the context events, our bean should implement the Application
Listener interface. This interface has just one method: onApplicationEvent(Applica
tionEvent event).

public class TradeContextEventListener implements ApplicationListener {
 public onApplicationEvent(ApplicationEvent event) {

Event Handling | 25

www.it-ebooks.info

http://www.it-ebooks.info

 //handle the event here
 }
}

The next step is to bind the listener to the context. You would do this by declaring the
bean in your config file:

<bean id="tradeCtxListener"
class="com.oreilly.justspring.ch3.TradeContextEventListener"/>

Spring context publishes the following types of events:

• ContextStartedEvent: This event is published when the ApplicationContext is star-
ted. The beans receive a start signal once the ApplicationContext is started. The
activities such as polling to database or observing a file system can be started once
you receive this type of event.

• ContextStoppedEvent: This is the opposite of the start event. This event is published
when the ApplicationContext is stopped. Your bean receives a stop signal from the
framework so you can do housekeeping if you wish.

• ContextRefreshedEvent: A refresh event is emitted when the context is either re-
freshed or initialized.

• ContextClosedEvent: This event occurs when the ApplicationContext is closed

• RequestHandledEvent: This is a web-specific event informing the receivers that a
web request has been received.

Publishing Custom Events
It’s a fairly simple task to publish custom events. First you have to create your event by
extending ApplicationEvent. The TradePersistedEvent, for example, is emitted once
the TradePersistor persists the trade. So let’s define the TradePersistedEvent as shown
below:

public class TradePersistedEvent extends ApplicationEvent{
 private Trade t = null;
 private persistedTime = null;
 private source = null;
 public TradePersisteEvent(String source, Trade t) { ... }

}

The TradePersistor should implement an interface called ApplicationEventPublisherA
ware. This interface lets the framework set the ApplicationEventPublisher instance on
the class by calling the setApplicationEventPublisher method. The ApplicationEvent
Publisher has one method—publish(ApplicationEvent event)—which is used to pub-
lish events.

public class TradePersistedEventPublisher implements ApplicationEventPublisherAware{
 private ApplicationEventPublisher tradeEventPublisher;
 ...

26 | Chapter 3: Advanced Concepts

www.it-ebooks.info

http://www.it-ebooks.info

 public void setApplicationEventPublisher(ApplicationEventPublisher Publisher) {
 this.tradeEventPublisher = Publisher;
 }
 public void publish(TradePersistedEvent event) {
 tradeEventPublisher.publish(event);
 }
}

Declare TradePersistedEventPublisher in the XML file as a normal bean. The container
can identify the bean as an event publisher because it implements the ApplicationE
ventPublisherAware interface. The container then sets the publisher automatically on
the instance of TradePersistedEventPublisher. The TradePersistedEventPublisher can
then use the injected ApplicationEventPublisher to publish the TradePersistedEvent.

public class TradePersistedEventListener implements ApplicationListener {
 public onApplicationEvent(TradePersistedEvent event) {
 //handle the event here
 }
}

Receiving Custom Events
Receiving the TradePersistedEvent is straightforward. Create a class that extends the
ApplicationListener and handle the onApplicationEvent method that receives Trade
PersistedEvent object.

public class TradePersistedEventListener implements ApplicationListener {
 public onApplicationEvent(TradePersistedEvent event) {
 //handle the event here
 }
}

Single Threaded Event Model
One important thing to keep in mind when working with Spring events handling is that
Spring’s event handling is single-threaded. It is primarily synchronous in nature. That
is, if an event is published, until and unless all the receivers get the message, the pro-
cesses are blocked and the flow will not continue. This proves to be disadvantageous
if you have multiple listeners listening for an event. So the single-thread model hampers
the performance of the application. Hence, care should be taken when designing your
application if event handling is to be used.

Auto Wiring
When creating a bean, we used to set the properties of the bean either using property
or constructor-arg attributes. However, Spring has an advanced concept of autowiring
the relationships and dependencies. This means that you don’t have to explicitly men-
tion the properties and their values, but setting autowire property to a value allows the

Auto Wiring | 27

www.it-ebooks.info

http://www.it-ebooks.info

framework to wire them with appropriate properties. There are fundamentally three
variations of autowiring, explained in the following sections.

Autowiring byName
When autowiring byName is enabled, the framework tries to inject the dependencies by
matching the names of the beans. You have to set the value of autowire to byName when
defining the bean in the config. The container looks at the properties of the respective
bean on which autowiring byName is set. It then tries to match with the beans defined
by the same name in the config file. If matches are found, it will inject those beans
straight away; otherwise, it will throw exceptions

For example, see the definition of the TradeReceiver class below:

public class TradeReceiver{
 private Persistor tradePersistor = null;
 private Transformer tradeTransformer = null;
 //setters and getters of the above two variables
}

The TradeReceiver depends on two other beans: the TradePersistor and TradeTrans
former. Our usual way is to define all three beans in the XML config file, then pass the
references of persistor and transformer to TradeReceiver. However, with autowiring,
you don’t have to go this far.

In order to enable autowiring, we should first tell the framework to do so. We use a
property called autowire in order to tell the container what beans it should wire auto-
matically. See the config below for all the three beans.

<bean name="tradeReceiver" class="com.oreilly.justspring.ch3.TradeReceiver"
autowire="byName"/>
<bean name="tradePersistor" class="com.oreilly.justspring.ch3.TradePersistor"/>
<bean name="tradeTransformer" class="com.oreilly.justspring.ch3.TradeTransformer"/>

Surprisingly, we did not declare any properties such as tradePesistor or tradeTrans
former for tradeReceiver! How does this work then? Well, the attribute auto
wire="byName" does the magic for you behind the scenes. In our TradeReceiver, we
defined two properties named tradePersistor and tradeTransformer. Can you see we
also defined two beans with the same names in our config? Hence the tradeReceiver is
injected with the matching beans.

Autowiring byType
Similar to byName, we need to set the autowire property to byType in order to enable this
type of autowiring. In this case, instead of looking for a bean with the same names, the
container searches for the same types. Taking the same example of TradeReceiver, set-
ting the autowire="byType" tells the container that it should look for a bean of type
TradePersistor and another one with a type of TradeTransformer. If the container finds

28 | Chapter 3: Advanced Concepts

www.it-ebooks.info

http://www.it-ebooks.info

the appropriate types, it will inject them into the bean. However, if it finds more than
one bean with the same type defined in the config, a fatal exception is thrown.

Autowiring by Constructor
You may have already gotten the gist of using autowire by constructor. If a bean has a
constructor that takes an argument of another bean type, the container looks for that
reference and injects it.

For example, we define a TradePersistor class with a single constructor that takes a
datasource object,

public class TradePersistor {
 public TradePersistor (DataSource datasource){ ..}
}

If we enable autowiring by constructor, the container looks for an object of type Data
Source and injects into the TradePersistor bean. You enable autowiring by constructor
as shown below:

<bean name="tradePersistor" class="com.oreilly.justspring.ch3.TradePersitor"
autowire="constructor"/>

Mixing Autowiring with Explicit Wiring
You can get the best of both worlds using auto and explicit wiring. Any ambiguities
encountered while autowiring can be dealt with using explicit wiring. For example, the
TradePersitor can be injected explicitly while the TradeTransformer can be wired au-
tomatically using byName variation.

<bean name="tradeReceiver" class="com.oreilly.justspring.ch3.TradeReceiver"
autowire="byName">
 <property name="tradePersistor" ref="tradePersistor"/>
</bean>
<bean name="tradePersistor" class="com.oreilly.justspring.ch3.TradePersistor"/>
<bean name="tradeTransformer" class="com.oreilly.justspring.ch3.TradeTransformer"/>

Summary
This chapter completes our journey into core Spring. It explains the fundamentals of
Containers and their usage. It then delves into using autowiring beans where you do
not have to set properties on the beans. It then explains various ways of instantiating
the beans, such as static methods or factory methods. We have also seen event handling
supported by the framework.

One of the important aspect of Spring is its support for enterprise features such as
Spring JMS and Database. The next chapter explains the simplification Spring has
brought into the Java messaging world.

Summary | 29

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 4

Spring JMS

The Java Messaging Service (JMS) API, which came into existence a decade ago, was
an instant hit in the area of distributed messaging and enterprise applications. The
demand for easier and standardized integration with the Messaging Middleware was
the drive for creating this technology. Although the API is straightforward and relatively
easy, Spring has taken a step forward in creating an even easier framework around it.
This chapter will introduce you to the JMS basics. It then explains Spring’s take on JMS
and how it simplified developers’ lives even further.

Two-Minute JMS
JMS provides a mechanism of communication between applications without being
coupled. The applications can talk to each other via the JMS provider without even
knowing who is on the other side of the fence.

For example, a PriceQuote service can publish price quotes onto a channel expecting
someone to receive them. However, the producer is not aware of any consumers that
would consume these quotes. Similarly, the consumers will not have any clue about
the source of data or the producers. In a way, they are hidden behind the walls, just
interacting via destinations. Producers and consumers don’t have to bother about each
other’s existence as long as they know their expected messages are delivered or received,
respectively.

There are three important moving pieces in JMS: the Provider, the Producer, and the
Consumer. The provider is the central piece, while the other two are either data pro-
viders or consumers. The architecture is based on hub and spoke; that is, the server
maintains a central ground like a hub while producers and consumers act like the
spokes.

The overall responsibility in this architecture is taken by the provider piece. The pro-
vider will make sure all the consumers receive the messages, while at the same time, all
providers are able to publish the messages. Pick up any book on the subject to under-
stand the JMS in detail.

31

www.it-ebooks.info

http://www.it-ebooks.info

Messaging Models
In JMS, there are primarily two messaging models: one is point-to-point (or P2P, as it
is sometimes called) and the other is publish-subscribe (Pub/Sub). There are specific
use cases where you should use these models. Although both are different fundamen-
tally in delivery and reception mechanisms, a unified API is used to access both the
models.

Point-to-Point Messaging

In point-to-point mode, a message is delivered to a single consumer via a destination.
A publisher publishes a message onto a destination, while a consumer consumes the
message off that destination. When a message is published in P2P mode to a queue,
one and only one consumer can receive the message. Even if there are hundreds of
consumers connected to that queue, still only one consumer will get that message de-
livered. Of course, you never know who’s the lucky winner though!

The destination point-to-point model is called Queue.

Pub/Sub Messaging

On the other hand, if a message is published to a destination, there could be several
subscribers each receiving a copy of the message. The publisher obviously publishes
the message once. The subscribers interested will listen to the same destination to con-
sume that message. As mentioned earlier, the JMS Provider will make sure each of the
subscribers receives a copy of the message.

The destination in a Pub/Sub model is called a Topic.

Spring JMS
The Spring framework has simplified the JMS API quite a bit. There’s a simple software
pattern to follow in order to understand the Spring JMS usage. Before we go into code
examples, let me explain the high-level classes and their usage.

If you understand just one class in the Spring JMS framework, you more or less have a
grip on Spring JMS. That single class is JmsTemplate. It is heavily used in Spring JMS
for both message consumption and production. However, it is not used for a particular
use case: the asynchronous message consumption. I will discuss this case a bit later in
the chapter. First, let’s start digging into the JmsTemplate class.

Mother of All: the JmsTemplate class
You can use the JmsTemplate class for both sending and receiving the messages. The
template class hides all the plumbing needed for connecting to a provider and publishes
or receives messages. It has to be wired with a few properties, of which the Connection

32 | Chapter 4: Spring JMS

www.it-ebooks.info

http://www.it-ebooks.info

Factory is a must. There are other properties that are required for more features (such
as defaultDestination and receiveTimeout parameters), which we will see in the fol-
lowing sections. Basically, it uses callbacks such as MessageCreator for the message
creation, SessionCallback for associating with a Session, and ProducerCallback for cre-
ating a message producer.

The JmsTemplate instance is a thread-safe class, so it can be shared across different
classes without having to worry about session corruption. There are two ways of cre-
ating or instantiating JmsTemplate. One is to create the class using a new operator in
your code and passing a ConnectionFactory instance to it. This type is shown below:

public class TradePublisher {
 private JmsTemplate jmsTemplate = null;
 private ConnectionFactory connectionFactory = null;
 public void setConnectionFactory(ConnectionFactory connectionFactory) {
 this.connectionFactory = connectionFactory;
 //here as you got the ConnectionFactory injected, create the JmsTemplate
 jmsTemplate = new JmsTemplate(connectionFactory);
 }
 // access the template when publishing the message
 public void publishTrade(Trade t) {
 jmsTemplate.send(..);
 }
}

The only requirement in this case is to wire the ConnectionFactory to the publisher in
your config so it can be injected when the bean is created. The ConnectionFactory is
the gateway to the JMS Provider. Of course, you need to instantiate the JmsTemplate
object using this connection factory.

The other way is to wire the template with a connection factory and inject into your
bean. This is all done in the config. Your bean will have a reference to JmsTemplate via
a setter method.

<bean id="tradePublisher" class="com.oreilly.justspring.jms.TradePublisher">
 <property name="jmsTemplate" ref="jmsTemplate"/>
 ...
</bean>
<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
</bean>
<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 ...
</bean>

The JmsTemplate is ideally injected into a related class that requires publishing or re-
ceiving messages from a JMS server. For sending messages, it exposes three methods:

send(MessageCreator msgCreator)
send(String destinationName, MessageCreator msgCreator)
send(Destination destinationName, MessageCreator msgCreator)

Spring JMS | 33

www.it-ebooks.info

http://www.it-ebooks.info

The first one assumes that messages should end up in a default destination, while the
next two specify the destination specifically. The second argument, MessageCreator, is
a callback used to create the JMS Message.

In the JMS world, all messages should be declared as one of the predefined five types
before attempting to publish or receive them. The five types are TextMessage, BytesMes
sage, ObjectMessage, StreamMessage, and MapMessage.

Publishing Messages
Let’s develop an example to understand the mechanics.

The TradePublisher is the publishing component in the workflow that would be in-
voked when the Trade is ready for publication. The aim is to publish the already con-
structed Trade onto a JMS destination so the parties interested would consume and act
on them. Example 4-1 shows the code:

Example 4-1. TradePublisher

public class TradePublisher {
 private JmsTemplate jmsTemplate = null;
 private String destinationName = null;
 public void publish(final Trade t) {
 getJmsTemplate().send(getDestinationName(), new MessageCreator() {
 @Override
 public Message createMessage(Session msg) throws JMSException {
 TextMessage m = session.createTextMessage();
 m.setText("Trade Stuff: "+t.toString());
 return m;
 }
 });
}
//setters and getters for the jmsTemplate and destinationName variables
}

The TradePublisher has two instance variables: jmsTemplate and destinationName. The
JmsTemplate is used to publish the messages. The destinationName defines the location
(queue or topic) where the messages should be sent.

The TradePublisher instance is injected with a JmsTemplate instance and a destination
Name value at runtime. The publish method on the TradePublisher instance is invoked
when a client wishes to publish a Trade message. One important feature you should
note concerns the MessageCreator interface. Spring uses the implementation of this
interface to create a new Message. The template class expects a new instance of this
callback with createMessage() implemented:

public Message createMessage(Session session) throws JMSException {
 TextMessage m = session.createTextMessage();
 m.setText("Trade Stuff: "+t.toString());
 return m;
}

34 | Chapter 4: Spring JMS

www.it-ebooks.info

http://www.it-ebooks.info

The appropriate message is created using the session, in this instance a TextMessage.

Before injecting the JmsTemplate into TradePublisher, it is configured in the Spring’s
XML (for this example, it is jms-beans.xml) file. In order to work as expected, the
template has a variable called connectionFactory that needs to be defined and refer-
enced.

See the snippet below showing the configuration of JmsTemplate:

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
</bean>

In the config file, you need to define the ConnectionFactory, too. The connection factory
is specific to individual JMS Providers. I am going to use ActiveMQ as the JMS Provider
for the rest of the chapter, but you can use any other providers that are JMS-compliant
(so the code should work without tweaking for each provider).

The ActiveMQ connection factory requires a brokerUrl property to be set:

<bean id="connectionFactory" class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL">
 <value>tcp://localhost:61616</value>
 </property>
</bean>

The last piece is the declaration of the TradePublisher bean itself in the config file.

<bean id="tradePublisher" class="com.oreilly.justspring.jms.TradePublisher">
 <property name="jmsTemplate" ref="jmsTemplate"/>
 <property name="destinationName" value="justspring.jms.testQueue"/>
</bean>

As you may have guessed, the two properties jmsTemplate and destinationName were
wired.

Write a simple test client that creates a Spring container by loading the jms-
beans.xml config file.

public class TradePublisherTest {
 …
 public void init(){
 ctx = new ClassPathXmlApplicationContext("jms-beans.xml");
 pub = (TradePublisher) ctx.getBean("tradePublisher");
 }

 public static void main(String[] args) {
 TradePublisherTest test = new TradePublisherTest();
 test.init();
 test.pub.publish(new Trade());
 System.out.println("Messages published");
 }
}

Spring JMS | 35

www.it-ebooks.info

http://www.it-ebooks.info

The client gets a hold of the TradePublisher instance to invoke the publish method with
a new Trade object. The TradePublisher was already injected with the dependencies
such as jmsTemplate and destinationName (see the config declaration).

Now, run the ActiveMQ server. The server is started and running on my local machine
(hence localhost) on a default port 61616.

Run the client and if all is set correctly, you should see a message landing up in the
ActiveMQ destination.

Sending Messages to Default Destination
If you wish to send the messages to a default destination, use the JmsTemplate’s
send(MessageCreator msgCreator) method. However, you need to wire the default des-
tination in the config file:

<bean id="defaultDestination" class="org.apache.activemq.command.ActiveMQQueue">
 <constructor-arg value="justspring.jms.testQueue2" />
</bean>

Then add a property defaultDestination in JmsTemplate:

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="defaultDestination" ref="defaultDestination" />
</bean>

Delete the destinationName variable from the TradePublisher, as it is now publishing
messages to the default destination. See the code snippet below. Note that the send
method does not have any reference to the destination.

public void publishToDefaultDestination(final Trade t) {
 getJmsTemplate().send(new MessageCreator() {
 @Override
 public Message createMessage(Session session) throws JMSException {
 TextMessage m = session.createTextMessage();
 m.setText("Trade Stuff: "+t.toString());
 return m;
 }
 });
}

Destination Types
By default, the JmsTemplate assumes that your messaging mode is point-to-point and
hence a destination to be a Queue. However, if you wish to change this mode to pub/
sub, all you are required to do is wire in a property called pubSubDomain, setting it to
true. This way, you are expecting the messages to be published onto a Topic.

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 ...

36 | Chapter 4: Spring JMS

www.it-ebooks.info

http://www.it-ebooks.info

 <property name="pubSubDomain" value="true" />
</bean>

Receiving Messages
Using JmsTemplate makes consuming the messages simple. However, there are two
modes in which you can receive messages: synchronous and asynchronous modes.

In synchronous mode, the thread that calls the receive method will not return, but waits
indefinitely to pick the message. I strongly recommend not using this mode unless you
have a strong case. Should you have no alternatives other than using synchronous re-
ceive method, use it by setting a value on timeout.

In the asynchronous mode, the client will let the provider know that it would be in-
terested in receiving the messages from a specific destination or set of destinations.
When a message arrives at the given destination, the provider checks the list of clients
interested in the message and will send the message to that list of clients.

Receiving Messages Synchronously
See the TradeReceiver given below to receive a message (the instance has been injected
with a JmsTemplate object).

public void receiveMessages() {
 Message msg = jmsTemplate.receive("justspring.jms.testQueue");
 System.out.println("Message Received: "+msg);
}

In the above code snippet, the receive method has been given a destination name in a
string format.

The receive method waits until the queue holds at least a message. As explained earlier,
the receive is a blocking call, which may waste CPU cycles if no message exists in the
queue. Hence, use the receiveTimeout variable with the appropriate value. The recei
veTimeout is an attribute on JmsTemplate that needs to be declared in config file, which
is shown below:

<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="receiveTimeout" value="2000" />
 ...
</bean>

In the above snippet, the TradeReceiver will timeout after two seconds if it does not
receive any messages in that time period.

You can also receive messages from a defaultDestination, too. As we did earlier, what
you have to do is wire the jmsTemplate with a defaultDestination property.

Spring JMS | 37

www.it-ebooks.info

http://www.it-ebooks.info

Receiving Messages Asynchronously
In order to receive the messages asynchronously, you have to do couple of things:

• Create a listener class that implements the MessageListener interface.

• Wire a XXXContainer in your spring beans XML file with a reference to your listener.
We will talk about XXXContainers in a minute.

So, the asynchronous client must implement JMS API’s interface MessageListener. This
interface has one method called onMethod that must be implemented by your class. The
TradeMessageListener, for example, is a simple class that implements the MessageLis
tener. The method would not do much except print out the message to the console.

public class TradeMessageListener implements MessageListener{
 @Override
 public void onMessage(Message msg) {
 System.out.println("TradeMessageListener:Message received:"+msg.toString());
 }
}

The second part is the task of wiring the containers. Don’t confuse yourself with the
ApplicationContext or BeanFactory containers. These containers are utility classes
provided by the framework used in clients that are destined to receive messages. The
containers are simple yet powerful classes that hide away all the complexities of con-
nections and sessions. They are responsible for fetching the data from the JMS Provider
and pushing it to your listener. It does this by having a reference to ConnectionFactory
(and hence JMS Provider) and a reference to your listener class.

Now, let’s looks at the workings in detail. Wire up the container and the listener as
shown in the code snippet below. Define an instance of DefaultMessageListenerCon
tainer and inject it with a connectionFactory, destination, and messageListener in-
stances. Note that the messageListener class refers to your listener class.

<bean id="defaultListenerContainer"
class="org.springframework.jms.listener.DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="destination" ref="defaultDestination" />
 <property name="messageListener" ref="tradeMessageListener" />
</bean>

<bean id="tradeMessageListener"
class="com.oreilly.justspring.jms.consumer.TradeMessageListener" />

Once the wiring is done, fire up your client, which loads up the above beans. It would
start up your messageListener instance, which waits to receive messages from the JMS
server.

Publish a message onto the Destination and you can see that message popping up at
the messageListener client.

38 | Chapter 4: Spring JMS

www.it-ebooks.info

http://www.it-ebooks.info

Spring Message Containers
We have seen the usage of DefaultMessageListenerContainer in the previous section.
Spring provides three different types of containers for receiving messages asynchro-
nously, including the DefaultMessageListenerContainer. The other two are SimpleMes
sageListenerContainer and ServerSessionMessageListenerContainer.

The SimpleMessageListenerContainer is basically the simplest of all and is not recom-
mended for production use. On the other hand, ServerSessionMessageListenerCon
tainer is one level higher than DefaultMessageListenerContainer in complexity as well
as features. This is suited if you wish to work with JMS sessions directly. It is also used
in the situation where XA transactions are required.

The DefaultMessageListenerContainer does allow you to participate in external trans-
actions. It is well-suited for most of the applications, but obviously choose the appro-
priate one based on your application’s requirement.

Message Converters
One of the requirements when publishing a message is to convert your domain object
into five pre-defined JMS message types. You cannot simply publish or receive domain
objects such as Trade or Order, even if they’re serialized. So, if you wish to publish your
domain objects, you need to convert them into the appropriate JMS Message type.

Spring framework comes in quite handy in doing this without having to sweat. The
developer will not have to worry about the conversions. Let’s see how the converters
work.

You create a class that implements the MessageConverter interface. This interface has
two methods: fromMessage and toMesage methods. As the name indicates, you imple-
ment these methods either to convert a JMS message to a domain object or vice versa.

The following code shows a typical converter used for Trade objects:

public class TradeMessageConverter implements MessageConverter {
 @Override
 public Object fromMessage(Message msg)
throws JMSException, MessageConversionException {
 Trade t = (Trade) ((ObjectMessage)msg).getObject();
 System.out.println("fromMessage: "+msg.toString());
 return t;
 }

 @Override
 public Message toMessage(Object obj, Session session)
throws JMSException,MessageConversionException {
 ObjectMessage objMsg = session.createObjectMessage();
 objMsg.setObject((Trade)obj);
 System.out.println("toMessage: "+objMsg.toString());
 return objMsg;

Spring JMS | 39

www.it-ebooks.info

http://www.it-ebooks.info

 }
}

The TradeMessageConverter class implements the MessageConverter interface. In the
fromMesage method, the Trade object is grabbed from JMS ObjectMessage.

In toMessage method, use the passed-in session object to create an ObjectMessage and
push the domain object using setObject method.

Once you have created the converter, there are couple of changes required. In the pub-
lisher and receiver code, you need to change the send and receive methods to conver
tAndSend() and receiveAndConvert() so the converter is used at publishing and receiv-
ing end.

The last thing you need to do is wire the converter, along with giving a reference of it
to JmsTemplate:

<bean id="tradeMessageConverter"
class="com.oreilly.justspring.jms.converter.TradeMessageConverter"/>
<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate">
 ...
 <property name="messageConverter" ref="tradeMessageConverter" />
</bean>

Whenever you publish a Trade message, the jmsTemplate uses the converter to convert
the Trade to ObjectMessage. Similarly when receiving, the template calls the converter
to do the conversion. This way, you write the converter once and use it everywhere and
at all times.

Summary
We have seen Java Messaging in action in this chapter. We briefly touched the subject
of JMS and delved into using Spring’s JmsTemplate class. We learned how we can pub-
lish the messages using the template class. We also saw how we can receive messages
synchronously and asynchronously using Spring’s framework classes called Message
Containers.

The next chapter deals with persistence and retrieval of Data using Spring’s JDBC and
Hibernate support.

40 | Chapter 4: Spring JMS

www.it-ebooks.info

http://www.it-ebooks.info

CHAPTER 5

Spring Data

Data persistence and retrieval are inevitable operations in an enterprise world. The
advent of JDBC paved a way to interact with multiple databases with ease and comfort.
It gained popularity in no time because of its unified API to access any database, be it
MySQL or Oracle or Sybase. Spring created a lightweight framework abstracting the
JDBC behind the scenes. Although the JDBC and Spring marriage makes a happy fam-
ily, there are some unsophisticated or unavailable features from the joint venture. One
feature that springs to mind is the support for Object Relational mappings. You still
have to write plain old SQL statements to access the data. Hibernate came into existence
utilizing this opportunity. It is now a popular and powerful open source framework.
Spring added more abstraction on top of the already powerful Hibernate to make it
even better.

This chapter explains how the Spring framework can be used effectively for accessing
the databases, without even having to worry about connections and statements. We
then continue on to Spring’s ORM support using Hibernate.

JDBC and Hibernate
The joint venture did not attempt to bridge the gap between Objects and Relational
Data. JDBC is certainly one of the first-hand choices for a Java developer when working
with databases. JDBC abstracts away the intricacies involved in accessing different da-
tabases. It gives a clear and concise API to do the job easily. However, as many devel-
opers who worked with JDBC will moan about, there is a lot of redundant code that
needs to be written, even if your intention is to fetch a single row of data. The advent
of Spring Framework has changed this scenario drastically. Using a simple template
pattern, Spring has revolutionized database access, digesting the boilerplate code al-
together into the framework. We do not have to worry about the unnecessary boot-
strapping and resource management code, and can write just the business logic. We
will see in this chapter how the framework has achieved this objective.

41

www.it-ebooks.info

http://www.it-ebooks.info

There is a second scenario to consider: working with relational entities as if they are
objects in your code. The simple name for this type of framework is Object Relational
Mapping (ORM) framework. Hibernate, Java Data Objects (JDO), iBatis, and TopLink
belong to this category. Using these ORM tools, we do not have to work at a low level
as exposed by JDBC; instead we manipulate the data as objects. For example, a table
called MOVIES consists of rows, each represented as a MOVIE relational entity. The same
would be modeled as a Movie object in your code, and the mapping of the mapping of
the MOVIE row to Movie domain object is performed by the framework behind the scenes.
Hibernate with Spring framework is a truly cost-effective solution.

Spring JDBC
I agree that JDBC is a simple API for data access. However, when it comes to coding,
it is still cumbersome, as you still have to write unnecessary code. Some say that about
80 percent of the code is repetitious. In a world of reusabiltiy, this is unacceptable. I
myself have written and seen some homegrown frameworks to abstract the redundan-
cies away from the developer. Spring does exactly this—abstracts away all the resource
management so we can concentrate on the meat of the application. It might not surprise
you to learn that Spring “reuses” its template design pattern, allowing us to interact
with the databases in a clean and easy manner. The core of the JDBC package revolves
around one class: JdbcTemplate. This class plays the key role in accessing data from
your components.

JdbcTemplate

The basic and most useful class from the framework is the JdbcTemplate. This call
should serve to do most of your work. But should you require a bit more sophistication,
the two variants of JdbcTemplate—the SimpleJdbcTemplate and NamedParameterJdbcTem
plate—should provide you that. The JdbcTemplate class provides the common aspects
of database operations, such as inserting and updating data using prepared statements,
querying tables using standard SQL queries, invoking stored procedures, etc. It can
also iterate over the ResultSet data. The connection management is hidden from the
user, and so is the resource pooling and exception management. Regarding the excep-
tions, one does not have to clutter the code with try-catch blocks because the database-
specific exceptions are wrapped by Spring’s Runtime Exceptions.

Following the template design pattern, the JdbTemplate provides some callback inter-
faces for you to implement. In these callbacks, you create the necessary business logic.
For example, PreparedStatementCallback is used for creating PreparedStatements, while
RowCallbackHandler is where you extract the ResultSet into your domain objects. The
CallableStatementCallback is used when executing a stored procedure. We will work
briefly with these callbacks in the next few sections.

42 | Chapter 5: Spring Data

www.it-ebooks.info

http://www.it-ebooks.info

Configuring JdbcTemplate

Before we can jump into working with the JdbcTemplate, we need to take care of a few
details. First, we need to supply a DataSource to the JdbcTemplate so it can configure
itself to get database access. You can configure the DataSource in the XML file as shown
in Example 5-1. I am using an open source JDBC framework—Apache commons DBCP
—for creating my datasources.

Example 5-1.

<bean id="movieDataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
 <property name="driverClassName" value="${jdbc.driver}"/>
 <property name="url" value="${jdbc.url}"/>
 <property name="username" value="${jdbc.username}"/>
 <property name="password" value="${jdbc.password}"/>
</bean>

As you can see, creating the datasource is easy. Provide respective properties related to
your database provider to fill in the properties shown above.

Once you have the datasource created, your next job is to create the JdbcTemplate. You
have primarily two options: First, you can instantiate a JdbcTemplate in your code base
(in your DAO), injecting the DataSource into it. Alternatively, you can define the
JdbcTemplate in the XML file, wiring the datasource to it. You then inject the JdbcTem
plate reference into your DAO class. The JdbcTemplate is a threadsafe object, so you
can inject it into any number of DAOs.

Let us define the DAO interface for accessing the MOVIES database. Example 5-2 shows
the simple API, which is self-explanatory:

Example 5-2.

public interface IMovieDAO {
 public Movie getMovie(String id);
 public String getStars(String title);
 public List<Movie> getMovies(String sql);
 public List<Movie> getAllMovies();
 public void insertMovie(Movie m);
 public void updateMovie(Movie m);
 public void deleteMovie(String id);
 public void deleteAllMovies();
}

The concrete class MovieDAO implements the IMovieDAO interface. It has JdbcTemplate as
a member variable. It is configured and wired with a datasource in the XML file and
injected into our concrete DAO. The XML file is shown below:

<bean id="movieDao" class="com.oreilly.justspring.data.dao.MovieDAO"
destroy-method="close">
 <property name="jdbcTemplate" ref="jdbcTemplate"/>
</bean>

JDBC and Hibernate | 43

www.it-ebooks.info

http://www.it-ebooks.info

<bean id="jdbcTemplate" class="org.springframework.jdbc.core.JdbcTemplate">
 <property name="dataSource" ref="movieDataSource"/>
</bean>

<bean id="movieDataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">

</bean>

The listing shown below is the concrete implementation of the DAO:

public class MovieDAO implements IMovieDAO {
 private JdbcTemplate jdbcTemplate = null;
 private void setJdbcTemplate(JdbcTemplate jdbcTemplate){
 this.jdbcTemplate = jdbcTemplate;
 }
 private JdbcTemplate getJdbcTemplate() {
 return this.jdbcTemplate;
 }
 ...
}

That’s it! Your JdbcTemplate is configured and ready to be used straight away. Let’s
concentrate on what the template can do for us.

Manipulating Data Using JdbcTemplate

The simplest operation is to fetch movie stars using a criteria such as movie title. You
can write a simple SQL query like "select stars from MOVIES where title='Dumbo'"
to retrieve the movie actors. Use the same query to invoke a queryForObject method
on JdbcTemplate as shown below:

String stars = getJdbcTemplate().queryForObject("select stars from MOVIES
where title= 'Dumbo'", String.class);

This method takes two parameters, a SQL query without bind variables and an expected
type of the result. The expected result is a comma-separated stars list. You can improve
this query by parameterising the query. The where clause will have a bind variable that
will change on queries. It is shown in the listing below:

String stars = getJdbcTemplate().queryForObject("select stars from MOVIES
where title=?", new Object[]{"Dumbo"}, String.class);

Here, ideally the second argument is passed via method arguments. For example, the
title is passed in as a method parameter, as shown in the following code snippet:

public String getStars(String title) {
 String stars = getJdbcTemplate().queryForObject("select stars from MOVIES
where title=?", new Object[]{title}, String.class);
 return stars;
}

44 | Chapter 5: Spring Data

www.it-ebooks.info

http://www.it-ebooks.info

There is a plethora of queryForXXX methods defined on the JdbcTemplate, such as quer
yForInt, queryForList, queryForMap, etc. Refer to the Spring Framework’s API to un-
derstand the workings.

Returning Domain Objects

The above queries returned a single piece of data, in this case, movie stars. How would
I retrieve a Movie object for a given an id or criteria? Well, you can use JdbcTemplate’s
queryForObject method passing additionally with a RowMapper instance. As we know,
the JDBC API returns a ResultSet and we need to map each and every column data
from the ResultSet into our domain objects. The Spring framework eliminates this
repetitious process by providing RowMapper interface. Simply put, RowMapper is an in-
terface for mapping table rows to a domain object. It has one method called mapRow that
should be implemented by the concrete implementations.

What we need to do is implement this interface to map our table columns to a Movie
object. Let’s implement for our Movie domain object.

public class MovieRowMapper implements RowMapper{
 public Object mapRow(ResultSet rs, int rowNum){
 Movie movie = new Movie();
 movie.setID(rs.getString("id"));
 movie.setTitle(rs.getString("title"));
 movie.setStars(rs.getString("stars"));
 movie.setReleaseData(rs.getDate("release_data"));

 return movie;
 }
}

Basically, the idea is to extract the relevant columns from the ResultSet and populate
our Movie domain object and return it.

Now that our MovieRowMapper is implemented, use jdbcTemplate to retreive the results.

public Movie getMovie(String id){
 String sql = "select * from MOVIES where id=?";
 return getJdbcTemplate().queryForObject(sql,new Object[]{id},new MovieRowMapper());
}

The JdbcTemplate executes the query by binding the argument and invoking the Movie
RowMapper with a returned ResultSet from the query.

You can use the same MovieRowMapper for returning all movies. It should be wrapped in
RowMapperResultSetExtractor as shown below:

public List getAllMovies(){
 RowMapper mapper = new MovieRowMapper();
 String sql = "select * from MOVIES";
 return getJdbcTemplate().query(sql, RowMapperResultSetExtractor(mapper,10));

JDBC and Hibernate | 45

www.it-ebooks.info

http://www.it-ebooks.info

We can use the jdbceTemplate.update() method to insert/update or delete the data.
The following code shows the insertion of Movie into our database.

public void insertMovie(Movie m){
 String sql = "insert into MOVIES (ID, TITLE,GENRE, SYNOPSIS) values(?,?,?,?)";
 Object[] params = new Object[]{m.getId(),m.getTitle(),m.getGenre(),m.getSynopsis()};
 int[] types = new int[] {Types.VARCHAR,Types.VARCHAR,Types.VARCHAR,Types.VARCHAR);
 jdbcTemplate.update(sql, params, types);
}

Similarly, deleting a single movie from the database is straightforward:

public void deleteMovie(String id){
 String sql = "delete from MOVIES where ID=?";
 Object[] params = new Object[]{id};
 jdbcTemplate.update(sql, params);
}

In order to delete all movies, use the following code:

public void deleteAllMovies(){
 String sql = "delete from MOVIES";
 jdbcTemplate.update(sql);
}

Calling Stored Procedures is also an easy thing using the update method:

public void deleteAllMovies(){
 String sql = "call MOVIES.DELETE_ALL_MOVIES";
 jdbcTemplate.update(sql);
}

As we have noticed, the JdbcTemplate has eased our burden in accessing the database
dramatically. I will advise you to refer Spring’s API for the template methods and their
usage.

Hibernate
Hibernate provides a mapping of database columns to the objects by reading a config-
uration file. We define the mapping of our domain objects to the table columns in the
XML configuration file. The configuration file for each of the mappings should have
an extension of ".hbm.xml". Spring abstracts the framework one step more and pro-
vides us with classes like HibernateTemplate to access the database. For example, let’s
define our MOVIE object using hibernate mapping rules.

<hibernate-mapping>
 <class name="com.oreilly.justspring.springdata.domain.Movie" table="MOVIES">
 <id name="id" column="ID">
 <generator class="assigned"/>
 </id>
 <property name="title" column="TITLE"/>
 <property name="genre" column="GENRE"/>
 <property name="synopsis" column="SYNOPSIS"/>

46 | Chapter 5: Spring Data

www.it-ebooks.info

http://www.it-ebooks.info

 </class>
</hibernate-mapping>

The class attribute defines the actual domain class, Movie in this case. The id attribute
is the primary key and is assigned, meaning it is the application’s responsibility to set
the primary key. The rest of the properties are mapped against the respective columns
in the MOVIES table.

Hibernate requires a Session object in order to access the database. A Session is created
from the SessionFactory. When using Spring framework, you can use LocalSession
FactoryBean to create a SessionFactory. The LocalSessionFactoryBean requires a data-
source to be wired in, along with hibernate properties and mapping resources. The
hibernateProperties enables the properties such as database dialect, pool sizes, and
other options. The mappingResources property loads the mapping config files
(Movie.hbm.xml in our case).

<bean id="sessionFactory"
class="org.springframework.orm.hibernate.LocalSessionFactoryBean">
 <property name="dataSource" ref="movieDataSource"/>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">net.sf.hibernate.dialect.MySQLDialect</prop>
 <prop key="hibernate.show_sql">false</prop>
 </props>
 </property>
 <property name="mappingResources">
 <list>
 <value>Movie.hbm.xml</value>
 </list>
 </property>
 <bean id="movieDataSource" class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close">
 ...
 </bean>
</bean>

Now that the sessionFactory is defined, the next bit is to define HibernateTemplate.
The HibernateTemplate requires a SessionFactory instance, so the following declaration
wires the sessionFactory we defined earlier.

<bean id="hibernateTemplate"
class="org.springframework.orm.hibernate.HibernateTemplate">
 <property name="sessionFactory" ref="sessionFactory"/>
</bean>
<bean id="movieDao" class="com.oreilly.justspring.data.dao.MovieDAO">
 <property name="hibernateTemplate" ref="hibernateTemplate"/>
</bean>

The configuration is completed. Let’s implement a few methods for retrieving the data.
The getMovie method shown below uses the template’s load method.

public Movie getMovie(String id){
 return (Movie)getHibernateTemplate().load (Movie.class, id);
}

JDBC and Hibernate | 47

www.it-ebooks.info

http://www.it-ebooks.info

As you can see, there’s no SQL that retrieves a movie in this method. We can feel that
we are working with Java objects rather than data!

The load method accesses the database to load the matching row based on the id passed.
Updating a Movie is simple as well:

public void updateMovie(Movie m){
 getHibernateTemplate().update (m);
}

As you can see, the single statement above will do the job! Deleting a row is as simple
as invoking the delete method.

public void deleteMovie(Movie m){
 getHibernateTemplate().delete (m);
}

Running queries is straightforward, too. Hibernate introduces Hibernate Query Lan-
guage (HQL) for writing queries. Use find methods to execute the queries. For example,
returning a Movie based on a ID is shown below:

public Movie getMovie(String id){
 return (Movie)getHibernateTemplate().find("from MOVIES as movies
where movies.id=?",id);
}

Summary
In this chapter, we discussed Spring’s support of JDBC and Hibernate. As we have seen
in the examples, Spring has truly simplified our lives by providing a simple yet powerful
API to work with. We can concentrate on the business logic rather than writing reams
of repetitive code fragments.

48 | Chapter 5: Spring Data

www.it-ebooks.info

http://www.it-ebooks.info

About the Author
Madhusudhan Konda is an experienced Java consultant working in London, primarily
with investment banks and financial organizations. Having worked in enterprise and
core Java for last 12 years, his interests lie in distributed, multi-threaded, n-tier scalable,
and extensible architectures. He is experienced in designing and developing high-fre-
quency and low-latency application architectures. He enjoys writing technical papers
and is interested in mentoring.

Colophon
The bird on the cover of Just Spring is a Tree Swift.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

www.it-ebooks.info

http://www.it-ebooks.info

www.it-ebooks.info

http://www.it-ebooks.info

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Spring Basics
	Introduction
	Object Coupling Problem
	Designing to Interfaces

	Introducing Spring
	Dependency Injection
	Refactoring Reader Using Framework
	Creating ReaderService

	Injection Types
	Constructor Type Injection
	Setter Type Injection
	Mixing Constructor and Setter

	Property Files
	Summary

	Chapter 2. Spring Beans
	Introduction to Beans
	Configuring using XML

	Creating Beans
	Life Cycle
	Method Hooks
	init-method
	destroy-method

	Bean Post Processors
	Bean Scopes
	Singleton Scope
	Prototype Scope

	Property Editors
	Injecting Java Collections
	Using Properties
	Using Lists, Sets and Maps

	Summary

	Chapter 3. Advanced Concepts
	Containers
	BeanFactory Container
	ApplicationContext Container

	Instantiating Beans
	Using Static Methods
	Using Factory Methods

	Bean Post Processors
	Event Handling
	Listening to Context Events
	Publishing Custom Events
	Receiving Custom Events
	Single Threaded Event Model

	Auto Wiring
	Autowiring byName
	Autowiring byType
	Autowiring by Constructor
	Mixing Autowiring with Explicit Wiring

	Summary

	Chapter 4. Spring JMS
	Two-Minute JMS
	Messaging Models
	Point-to-Point Messaging
	Pub/Sub Messaging

	Spring JMS
	Mother of All: the JmsTemplate class
	Publishing Messages
	Sending Messages to Default Destination
	Destination Types
	Receiving Messages
	Receiving Messages Synchronously
	Receiving Messages Asynchronously
	Spring Message Containers
	Message Converters

	Summary

	Chapter 5. Spring Data
	JDBC and Hibernate
	Spring JDBC
	JdbcTemplate
	Configuring JdbcTemplate
	Manipulating Data Using JdbcTemplate
	Returning Domain Objects

	Hibernate

	Summary

	Colophon

